
EASY AS SIXEASY AS SIX
by Arne Sommer

PerlCon 2019 - Riga

Corrections and comments:

https://perl6.eu/easy-as-six.pdf

https://perl6.eu/easy-as-six.html

https://perl6.eu/easy-as-six.pdf
https://perl6.eu/easy-as-six.html

EASY AS SIXEASY AS SIX
Why write a lot of code when you can let Perl 6 do

most of the job for you?

Programmers repeat themselves all the time.
Reinventing the wheel can be fun, but modules and
object orientation are helpful in reducing the code

base.

EASY AS SIX/2EASY AS SIX/2
The Perl 6 designers took a hard look at the common

tasks, and came up with ways to reduce the amount of
code we have to write. The result is a lot of very

powerful keywords in the core language.

This talk takes a look at some of them.

WHAT IT ISN'T ABOUTWHAT IT ISN'T ABOUT

THIS IS NOT AN INTRODUCTIONTHIS IS NOT AN INTRODUCTION
TO PERL 6TO PERL 6

See my «Perl6 In 45+45 Minutes» introduction held at
the Nordic Perl Worskshop in Oslo in September 2018.

(PDF + source code)

https://npw2018.perl6.eu/

https://npw2018.perl6.eu/

ABOUT MEABOUT ME

ARNE SOMMERARNE SOMMER
I have programmed Perl for 30 years...

Perl 3 and 4 (1989-1995), Perl 5 (1994-), and Perl 6 (2015-).

I am active in Oslo.pm (in Norway).

Web: bbop.org
Email: arne@bbop.org
CPAN: ARNE
GitHub: arnesom

PERL 6 BLOGPERL 6 BLOG
I have a Perl 6 Blog, at

Article #25 published today!

https://perl6.eu

https://perl6.eu/

PERL WEEKLY CHALLENGEPERL WEEKLY CHALLENGE
Most of the articles are in response to the «Perl Weekly

Challenge».

https://perlweeklychallenge.org

https://perlweeklychallenge.org/

PERL 6 BOOK & COURSESPERL 6 BOOK & COURSES
I am working on several Perl 6 courses:

https://course.perl6.eu

https://course.perl6.eu/

BEGINNING PERL 6BEGINNING PERL 6
The «Beginning Perl 6» course in Riga was cancelled

due to lack of interest.

NEWLINESNEWLINES

OUTPUTOUTPUT
Perl 5:

Perl 6:

«say» gives you a trailing newline automatically.
(«print» is available as well, if you need manual control of the newlines.)

print "Hello!\n";

say "Hello!";

INPUTINPUT
Read a line from the keyboard, without the trailing

newline.

Perl 5:

Perl 6:
chomp(my $a = get);

my $a = get;

IN- AND OUTPUTIN- AND OUTPUT
Perl 5:

Perl 6:

print "Name: ";
chomp(my $name = get);

my $name = prompt "Name: ";

FILESFILES

NEWLINE != NEWLINENEWLINE != NEWLINE
A newline is one or two characters:

OS Character(s) Strings Codepoint
Windows <CR><LF> \r\n 10 + 13
Linux <LF> \n 10
Mac OSX <LF> \n 10
Mac (old) <CR> \r 13

Perl 6 takes care of them all.

READING A FILEREADING A FILE
Perl 5:

Perl 6:

«IO.lines» opens and closes the file automatically.

if (open($fh, "filename"))
{
 while (my $line = <$fh>);
 {
 chomp $line; do_something($line);
 }
 close $fh;
}

do-something($line) for "filename".IO.lines;

READING A FILE/2READING A FILE/2
If you want the entire file:

Perl6:

One single string, with all the newlines intact.

We can get the individual lines like this:

$content = slurp "filename";

do-something($_) for $content.lines;

WRITING A FILEWRITING A FILE
Perl 5:

Perl 6:
The same way. But...

my @lines = ...;
if (open(my $fh, '>', "filename"))
{
 print $fh $_\n" for @lines;
 close $fh;
}

WRITING A FILE/2WRITING A FILE/2
If you want to write the entire file at once:

Perl 6:
spurt "filename", $text;

DOES THE FILE ON THEDOES THE FILE ON THE
COMMAND LINE EXIST?COMMAND LINE EXIST?

Perl 5:

Perl 6:

my $file = $ARGV[0] || die("Specify a file");
if (-e $file && -r $file)
{
 do_something;
}

sub MAIN ($file where $file.IO.e && $file.IO.r)
{
 do-something;
}

IF (AND ALTERNATIVES)IF (AND ALTERNATIVES)

STACKED CONDITIONSSTACKED CONDITIONS
Perl 5:

Don't write this:

Perl 6:

do_something($a) if ($a >= 5 && $a <= 10);

do_something($a) if ($a >= 5 and $a <= 10);

do-something($a) if 5 <= $a <= 10;

AVOIDING IFAVOIDING IF
Perl 5 (with «if»):

Perl 6 (With Multiple Dispatch):

The first one is a short form for:

sub do_something
{
 my $a = shift;
 if ($a == 42) { print "The meaning of ..\n" }
 else { print "$a\n"; }
}

multi sub do_something (42) { say "The meaning of .."; }
multi sub do-something ($a) { say $a; }

multi sub do_something ($a where $a == 42)

JUNCTIONSJUNCTIONS

COMPLICATED IFSCOMPLICATED IFS
Perl 5:

Perl 6:
With Junctions

Easier to read, harder to make an error (typing $b) and scales quite well.

do_something($a) if ($a == 1 || $a == 6 || $a == 11);

do-something($a) if $a == 1 | 6 | 11;

JUNCTIONSJUNCTIONS
Or we could write it like this:

Junctions work in assignments as well:

The variable «$a» has two values at the same time.
(Much like Schrödinger's Cat.)

do-something($a) if $a == any(1, 6, 11);

my $a = 1 | 2;
say $a; # -> any(1, 2)

say "L" if $a == 1; # -> L
say "M" if $a == 2; # -> M

THE TYPE SYSTEMTHE TYPE SYSTEM

TYPES AND CLASSESTYPES AND CLASSES
Perl 5:

No type system, except classes (with a strange syntax).

Perl 6:

A full type system, that you can choose to use
Everything is an object, and can be treated as such.
If you want to...
Classes (on stereoids), with a straightforward syntax

TYPESTYPES
Perl 6:

my Int $a = 12;

$a = "13";
Type check failed in assignment to $a;
 expected Int but got Str ("13") in block ...

my Str $b = "abc";

$b = 10;
Type check failed in assignment to $b;
 expected Str but got Int (10) in block ...

NUMBERS WITH DECIMALNUMBERS WITH DECIMAL
POINTSPOINTS

You may have seen this yesterday:

Cobol got it right, but then it went downhill. Until Perl 6...

perl -E 'say 0.1 + 0.2 - 0.3'
5.55111512312578e-17

perl6 -e 'say 0.1 + 0.2 - 0.3'
0

RATIONAL NUMBERSRATIONAL NUMBERS

Most languages:

Perl 6:

Disclamer: Some languages may have followed Perl 6's lead. (Perl 5 has...)

my $a = 1/3;
my $b = $a + $a + $a;
say $a;

0.999999999999999999 # Or similar

1

RATIONAL NUMBERS/2RATIONAL NUMBERS/2

A «Rat» value is stored as two integers; the numerator
(«$a.numerator») and the denomerator

(«$a.denomerator»), and the value that the first «say»
gives us is evaluated just for printing it (stringification).

Use «$a.nude» to get both.
And don't say that the Perl 6 developers lack humor.

my $a = 1/3;
say $a; # -> 0.333333
say $a.WHAT; # -> (Rat)
say $a.perl; # -> <1/3>

RATIONAL NUMBERS/3RATIONAL NUMBERS/3
Note that a «Rat» reduces the values as much as

possible:

The last one gives? �

my $a = 3/9;
say $a.perl; # -> <1/3>

my $b = 1/5;
say $b.perl; # -> <1/5>

my $c = $a + $b
say $c; # -> 0.533333
say $c.perl; # -> ???

say $c.perl; # -> <8/15>

INTEGERS (INT)INTEGERS (INT)
Using the type system gives error checking for free:

Perl 6:

Result:

The error is catched at Compile Time.

sub addition (Int $a, Int $b) { return $a + $b; }
my $sum = addition("one", "ten");

===SORRY!=== Error while compiling:
Calling addition(Str, Str) will never work with declared \
 signature (Int $a, Int $b)
------> <BOL>⏏addition("one", "ten");

WITHOUT TYPESWITHOUT TYPES
Without the types, we get a Run Time error:

Perl 6:

Result:

sub addition ($a, $b) { return $a + $b; }
my $sum = addition("one", "ten");

Cannot convert string to number: base-10 number must begin \
with valid digits or '.' in '⏏one' (indicated by ⏏)
 ...

REPEATING TYPE CONSTRAINTSREPEATING TYPE CONSTRAINTS
You have a procedure that only works with prime

numbers:

But what if you have a lot of procedures with the same
requirement?

sub magic-function (Int $a where $a.is-prime)
{
 ...;
}

CUSTOM TYPESCUSTOM TYPES
Use a custom type:

We can skip the «Int» part:

subset Prime of Int where *.is-prime;

sub magic-function (Prime $a)
{
 say "OK";
}

subset Prime where *.is-prime;

CUSTOM TYPES/2CUSTOM TYPES/2
Testing it:

> magic-function(1);
Constraint type check failed in binding to parameter '$a'; \
 expected Prime but got Int (1)
 in sub magic-function at <unknown file> line 1
 in block <unit> at <unknown file> line 1

> magic-function(3);
OK

CUSTOM TYPES AND VARIABLESCUSTOM TYPES AND VARIABLES
Custom Types work with variables:

As do Type Constraints:

my Prime $r;

my Int $s where .is-prime;
my $t where .is-prime;

RANDOMNESS & RANGESRANDOMNESS & RANGES

A RANDOM INTEGERA RANDOM INTEGER
A random integer from 10 to 99, both included.

Perl 6 (with «rand»):

It is very easy to get it wrong.

my $value = rand(90).Int + 10; ## 90 == 99 - 10 + 1

A RANDOM INTEGER/2A RANDOM INTEGER/2
Perl6 (with «pick»):

Impossible to get it wrong.

my $value = (10 .. 99).pick;

RANGESRANGES
The «10 .. 99» construct is a Range. It gives consecutive

integers from the first value to the last value, both
included.

RANGES/2RANGES/2
It is possible to skip the first, last, or both values in the
result by appending a «^» (caret) on the relevant side.

These are all equal:

Note that the caret is part of the Range operator «..», without any whitespace!

my $value = (10 .. 99).pick;
my $value = (9 ^.. 99).pick;
my $value = (9 ^..^ 100).pick;

RANGES SHORTCUTRANGES SHORTCUT
A loop to execute ten times:

We can use the «but not including» caret as a
shorthand:

This is also executed ten times, but...
The values are off by -1; 0 .. 9 (instead of 1 .. 10). Index-friendly...

do-something($_) for 1 .. 10;

do-something($_) for ^10;

SEQUENCESSEQUENCES

RANGES VS SEQUENCESRANGES VS SEQUENCES
A Range:

A Sequence:

A range can only hold consecutive (increasing)
integers, but a sequence can hold all types of numeric

values (in any order) - and strings.

Ranges & Sequences are usually lazy; the values are
only calculated when actually needed.

my $values := 1 .. Inf;

my $values := 1 ... Inf;

SEQUENCESSEQUENCES

Binding (:=) instead of assignment (=) is required, and
you cannot bind to an array (@values).

(As the assignment to an array would expand it to a list, and it is hard to do that with
infinity...)

my $values := 1 ... Inf;

say $values[3]; # -> 2

COMMON SEQUENCESCOMMON SEQUENCES
Perl 6 recognizes some simple sequences:

This is an example of a «deferred error». The error (actually an exception) is only triggered
when you use the value.

my $v := 1,3,5 ... Inf;
say $v[^10]; # -> (1 3 5 7 9 11 13 15 17 19)

my $v := 1,2,4 ... Inf;
say $v[^10]; # -> (1 2 4 8 16 32 64 128 256 512)

my $v := 1,3,6 ... Inf;
say $v[^10];
Unable to deduce arithmetic or geometric sequence from \
 1,3,6 (or did you really mean '..'?)
 in block <unit> at <unknown file> line 1

DEFERRED ERRORSDEFERRED ERRORS
Try the following:

It doesn't blow up, as we do not use (access) the value.

But this (the «say» line) crashes the program:

Note that in REPL mode, the first one will cause an Exception, as the value is printed.

my $a = 1 / 0;

my $a = 1 / 0;
say $a;

A PRIME SEQUENCEA PRIME SEQUENCE
We can set up a sequence of the prime numbers like

this:

The 10 first primes:
my $primes := (1 ... Inf).grep(*.is-prime);

> say $primes[^10];
(2 3 5 7 11 13 17 19 23 29)

A PRIME SEQUENCE & TYPEA PRIME SEQUENCE & TYPE
subset Prime of Int where *.is-prime;

my $primes := (^Inf).grep(*.is-prime);

my Prime $a = $primes[8]; # 23

say $a++;
Type check failed in assignment to $a; expected Prime \
 but got Int (24)
 in block <unit> at <unknown file> line 1

CUSTOM OPERATORCUSTOM OPERATOR
We can set up a custom version of «++» to work on

primes:

Using it:

subset Prime of Int where *.is-prime;
multi sub postfix:<++>(Prime $n is rw)
{
 for $n ^.. * # Start with $n+1
 {
 ($n = $_; last) if .is-prime;
 }
}

my Prime $a = 3;

($a++; print "$a ") for ^10; print "\n";
-> 5 7 11 13 17 19 23 29 31 37

DEFINED OR NOTDEFINED OR NOT

BOOLEAN VALUESBOOLEAN VALUES
Perl 6 has the Boolean values «True» and «False» built

in.

The line between Boolean values and numbers is
blured:

say True + 0; # -> 1
say False + 0; # -> 0

BOOLEAN CONTEXTBOOLEAN CONTEXT
The Perl 5 behaviour of using any value in Boolean

context is here:

Perl 6:
my $a = 5; do-something if $a; # Called
my $b = "Q"; do-something if $b; # Called
my $c = 0; do-something if $c; # Not called
my $c = 0; do-something if $c.defined; # Called
my $d; do-something if $d; # Not called

REGEXES (AND ALTERNATIVES)REGEXES (AND ALTERNATIVES)

REGEX 001REGEX 001
Perl 6 Regexes respect Unicode properties:

A roman numeral as a single Unicode character.

<:letter> is a character class. There are many of them, and they have decent names.

The funny quotes in the output are there to show us
that this is a match object, and not a string.

say Ⅵ ~~ /\d/; # -> ｢6｣

say "ß" ~~ /<:letter>/; # -> ｢ß｣

COMPLEX REGEXESCOMPLEX REGEXES
A Perl6 Regex that parses a URL:

Sort of. It has some errors. The comments help, but it isn't very readable.

$url ~~
/^
 (<[a..z]><[a..z 0..9 + . : \-]>*)\: # $0 scheme
 [\/\/ # //
 [(.*[\:.+]?)\@]? # $1 userinfo (opt.)
 (<[\w \. \-]>*) # $2 host
 [\:(\d+)]? # $3 port (optional)
 (\/?) # $4 path separator
]? # $1-$4 are optional
 ([<[\w \d -] - [#?]>]+)? # $5 path (optional)
 [\?(<[\w \d \- =]>*)]? # $6 query (optional)
 [\#(.*)]? # $7 fragment (opt.)
$/

GRAMMARSGRAMMARS

W=Wrapper Regex
S=Separator (to get rid of).

my $result = URL.parse($url);

grammar URL
{
 regex TOP { <SchemeW> <Hostinfo>? <Path>?
 <QueryW>? <FragmentW>? }
 regex SchemeW { <Scheme> <SchemeS> }
 regex SchemeS { ':' }
 regex Scheme { <[a..z]><[a..z 0..9 + . : \-]>* }
 regex Hostinfo { '//' <UserinfoW>? <Host> <PortW>? }
 regex UserinfoW { <Userinfo> <UserinfoS> }
 regex Userinfo { .*[\:.+]? }
 regex UserinfoS { '@' }
 regex Host { <[\w \. \-]>* }

GRAMMARS/2GRAMMARS/2
The rest of it:

See for details.

 regex PortW { <PortS> <Port> }
 regex PortS { ':' }
 regex Port { \d+ }
 regex Path { '/'? <[\w \d -] - [#?]>+ }
 regex QueryW { <QueryS> <Query> }
 regex QueryS { '?' }
 regex Query { <[\w \d \- =]>* }
 regex FragmentW { <FragmentS> <Fragment> }
 regex FragmentS { '#' }
 regex Fragment { .+ }
}

https://perl6.eu/ackerman-url.html

https://perl6.eu/ackerman-url.html

THE PERL WEEKLY CHALLENGETHE PERL WEEKLY CHALLENGE
#20.1#20.1

«Write a script to accept a string from command line
and split it on change of character. For example, if the

string is “ABBCDEEF”, then it should split like “A”,
“BB”, “C”, “D”, “EE”, “F”.

LOOPLOOP
sub split-change ($in) | {
{ | $out ~= @in.shift;
 my @out; | }
 my @in = $in.comb; | else
 my $out; | {
 | @out.push($out);
 while @in | $out = "";
 { | last;
 $out = @in.shift; | }
 | }
 while @in | }
 { | @out.push($out) if $out;
 if @in[0] eq | return @out;
 $out.substr(0,1) | }

GATHER/TAKEGATHER/TAKE
sub split-change ($in) {
 gather {
 my $out = $in.substr(0,1);
 for 1 .. $in.chars -> $index {
 if $out.substr(0,1) eq $in.substr($index,1) {
 $out ~= $in.substr($index,1);
 }
 else {
 take $out;
 $out = $in.substr($index,1);
 }
 }
 }
}

GRAMMARGRAMMAR

See for details.

grammar SPLIT
{
 regex TOP { <Char>+ }
 regex Char { (.) $0* }
}

sub split-change ($in)
{
 my $result = SPLIT.parse($in);
 return $result<Char>.map({ $_.Str });
}

https://perl6.eu/amicable-split.html

https://perl6.eu/amicable-split.html

FINAL WORDSFINAL WORDS

LINKSLINKS
This presentation:

My «Perl6 In 45+45 Minutes» introduction:

My Perl 6 blog:

Any Questions?
�

https://perl6.eu/easy-as-six.pdf

https://npw2018.perl6.eu/

https://perl6.eu

exit;

https://perl6.eu/easy-as-six.pdf
https://npw2018.perl6.eu/
https://perl6.eu/

